58 research outputs found

    Maximally spatial-disjoint lightpaths in optical networks

    Get PDF
    Lightpaths enable end-to-end all-optical transmission between network nodes. For survivable routing, traffic is often carried on a primary lightpath, and rerouted to another disjointed backup lightpath in case of the failure of the primary lightpath. Though both lightpaths can be physically disjointed, they can still fail simultaneously if a disaster affects them simultaneously on the physical plane. Hence, we propose a routing algorithm for provisioning a pair of link-disjoint lightpaths between two network nodes such that the minimum spatial distance between them (while disregarding safe regions) is maximized. Through means of simulation, we show that our algorithm can provide higher survivability against spatial-based simultaneous link failures (due to the maximized spatial distance)

    Optimization of system’s parameters for wavelength conversion of E-band signals

    Get PDF
    Current and future wireless communication systems are designed to achieve the user’s demands such as high data rate and high speed with low latency and simultaneously to save bandwidth and spectrum. In 5G and 6G networks, a high speed of transmitting and switching is required for internet of things (IoT) applications with higher capacity. To achieve these requirements a semiconductor optical amplifier (SOA) is considered as a wavelength converter to transmit a signal with an orthogonal frequency division multiplexing with subcarrier power modulation (OFDM-SPM). It exploits the subcarrier’s power in conventional OFDM block in order to send additional bits beside the normally transmitted bits. In this paper, we optimized the SOA’s parameters to have efficient wavelength conversion process. These parameters are included the injection current (IC) of SOA, power of pump and probe signals. A 7 Gbps OFDM-SPM signal with a millimeter waves (MMW) carrier of 80 GHz is considered for signal switching. The simulation results investigated and analyzed the performance of the designed system in terms of error vector magnitude (EVM), bit error rate (BER) and optical signal-to-noise ratio (OSNR). The optimum value of IC is 0.6 A while probe power is 9.45 and 8.9 dBm for pump power. The simulation is executed by virtual photonic integrated (VPI) software

    Efficient P2P data dissemination in integrated optical and wireless networks with Taguchi method

    Get PDF
    The Quality of Service (QoS) resource consumption is always the tricky problem and also the on-going issue in the access network of mobile wireless part because of its dynamic nature of network wireless transmissions. It is very critical for the infrastructure-less wireless mobile ad hoc network that is distributed while interconnects in a peer-to-peer manner. Toward resolve the problem, Taguchi method optimization of mobile ad hoc routing (AODVUU) is applied in integrated optical and wireless networks called the adLMMHOWAN. Practically, this technique was carry out using OMNeT++ software by building a simulation based optimization through design of experiment. Its QoS network performance is examined based on packet delivery ratio (PDR) metric and packet loss probabilities (PLP) metric that consider the scenario of variation number of nodes. During the performing stage with random mobile connectivity based on improvement in optimized front-end wireless domain of AODVUU routing, the result is performing better when compared with previous study called the oRia scheme with the improvement of 14.1% PDR and 43.3% PLP in this convergence of heterogeneous optical wireless network

    QoS support with taguchi method in simulation modeling hybrid architecture of optical and multihop wireless ad hoc networks

    Get PDF
    Majority of the resource consumption is consumed for their operation in the access network of mobile wireless part because of its dynamic topology and limited range of each mobile host's wireless transmissions. This paper presents a technique using OMNeT++ software for building a design of experiment simulation model with Taguchi optimization method supported mobile circumstantial network (MANET) of AODVUU communication protocol to be apply into collaborate multiple layers framework of deploy over passive optical network (PON) referred to as the walk Mobile Hybrid optical wireless access network (erL-MMHOWAN). it's to guage the network quality of service effectively that take into account variety of nodes over that the Edouard Manet could operate. Its performance is examined on the known performance metrics just like the network capability and energy consumption. Simulation result shows for the random mobile property during this convergence of heterogeneous optical wireless network will perform higher with the optimized front-end wireless circumstantial

    Impact of Fiber Duplication on Protection Architectures Feasibility for Passive Optical Networks

    Get PDF
    Adaptability of high capacity passive optical network (PON) requires the provision of an efficient fault detection and restoration mechanism throughout the network at an acceptable cost. The readily adapted pre-planned protection strategy relies on component duplication, which significantly increases the cost of deployment for PON. Therefore, it is imperative to determine a suitable component that requires high redundancy and determine the impact of protection for that component on feasibility of PON. Five protection architecture including ITU-T 983.1 Type C, single ring, dual ring, tree- and ring-based architectures with hybrid star-ring topology at the optical distribution network (ODN), are considered to evaluate the impact of fiber duplication in terms of capital expenditure (CAPEX), operation expenditure (OPEX), reliability, and support for maximum number of subscribers. Reliability block diagram (RBD) based analysis shows that desirable 5 nines connection availability is provided by each protection architecture and utilization of ring topology avoids duplication of the fiber but effects the number of subscribers. Furthermore, it is observed that OF duplication at ODN is the main contributor to CAPEX. Collectively hybrid protection architectures provide efficient performance and proves to be a feasible solution for the deployment of survivable PONs at the access domain

    Dithering Analysis in an Orthogonal Frequency Division Multiplexing-Radio over Fiber Link

    Get PDF
    Nonlinearity is one major problem broadband communication faced on utilizing the high capacity of optical fibers. That is due to scattering  phenomenon, which results in the deviations of wavelengths and energies. The dithering method is applied in the attempt to reduce those scatterings. In this paper, we propose the performance of a dithering technique based new system OFDM-RoF using two modulator scheme and coherent detection to alleviate the characteristics nonlinearity applied on the system. The dithering technique inputs signal externally to the signal processing systems to eliminate the effects of nonlinearity. Here, we report the performance of a dithering technique based on the OFDM-RoF, the results our experiment showed that the applied dithering with 16 QAM modulation can make the system more reliable and increases  the power level 1.55% with 193.1 THz, 2% with  100 THz and 1.99% ~ 200 THz, the best condition are with fd < fc. However, all condition close proximity in the parameters OLP (optical launch power), BER and SER measurement. The result demonstrated a high efficiency and good power in which the OLP operated 6.396 dBm / 4.361 E-3 W~fd 200 THz, 3.578 dBm / 2.279 E-3 W~fd 193.1 THz and 6.420 dBm / 4.3384 E-3 W~100 THz. The best BER value is achieved at 0.33 and SER 0.78 at 5 km~fd 100 THz, 0.33 and 0.768 for 10 km~fd 193.1 THz, 0.478 and 0.92 for 50 km~fd 193.1 THz

    Determination of optimized sleep interval for 10 gigabit-passive optical network using learning intelligence

    Get PDF
    The overall aim of this project is to investigate the application of a machine learning method in finding the optimized length of asleep time interval (TAS) in a cyclic sleep mechanism (CSM). Since past decade, the implementations of CSM in the optical network unit (ONU) to reduce the energy consumption in 10 gigabit-passive optical network (XG-PON) were extensively researched. However, the newest era sees the emergence of various network traffic with stringent demands that require further improvements on the TAS selection. Since conventional methods utilize complex algorithm, this paper presents the employment of an artificial neural network (ANN) to facilitate ONU to determine the optimized TAS values using learning from past experiences. Prior to simulation, theoretical analysis was done using the M/G/1 queueing system. The ANN was than trained and tested for the XG-PON network for optimal TAS decisions. Results have shown that towards higher network load, a decreasing TAS trend was observed from both methods. A wider TAS range was recorded from the ANN network as compared to the theoretical values. Therefore, these findings will benefit the network operators to have a flexibility measure in determining the optimal TAS values at current network conditions

    Varying effects of temperature and path-length on ozone absorption cross-section

    Get PDF
    Inconsistencies in the absorption cross section of ozone have been observed. Hence, for accurate measurement, we have reported the combined effects of varying optical path-length and temperature on the ozone gas absorption cross section (OACS) at 334.15nm. Adopting optical absorption spectroscopy, results of the (OACS) have been simulated using spectralcalc simulator with HITRAN 12 has the latest line list. OACS increased by 52.27% as the temperature increased from 100K to 350K while it was slightly affected by a 0.007% decrease varying the path-length from 0.75cm-130cm

    Improving the optical burst switching networks quality of service by ensuring the fireness among the network traffic types

    Get PDF
    The Optical burst switching (OBS) networks have been attracting much consideration as a promising approach to build the next generation optical Internet. Aggregating the burst in the OBS networks from the high priority traffic will increase the average of the loss of its packets. However, the ratio of the high priority traffic (e.g. real-time traffic) in the burst is a very important factor for reducing the data loss, and ensuring the fairness between network traffic types. This paper introduces a statistical study based on the significant difference between the traffics to find the fairness ratio for the high priority traffic packets against the low priority traffic packets inside the data burst with various network traffic loads. The results show an improvement in the OBS quality of service (QoS) performance and the high priority traffic packets fairness ratio inside the data burst is 50 to 60%, 30 to 40%, and 10 to 20% for high, normal, and low traffic loads, respectively

    Resource Efficient For Hybrid Fiber-Wireless Communications Links In Access Networks With Multi Response Optimization Algorithm

    Get PDF
    Mobile Ad-hoc Network (MANET) is currently popular at demand as a solution in numerous deployments that cover from the combat zone to the user’s parlor due to its quickly deployable with adaptive topology and able to function without any infrastructure. However, variable topology is one of the key challenges since the network throughput and energy consumption depends on number of possible connections. This work proposes a Multi response Optimization (MO) algorithm, named MO-LMMHOWAN that apply in Last Mile Mobile Hybrid Optical Wireless Access Network (LMMHOWAN). In this perspective, the paper originally proposes a model and an architecture that roughly combine MANET and FiWi domains based on adaptive data rate transmission of cross layer scheme integrated with Taguchi method: the primary idea is that this MANET and FiWi can route the packet in accordance to the pre-optimized and robust profile drive by the adaptive data rate, thus mutually enhancing their capability of packet transmission over hybrid FiWi- MANET networks. Technically, the effects of seven controlled factors and two uncontrolled factors were investigated by implementing the Orthogonal Arrays (OA) of Taguchi experimental method on a AODVUU routing path in last mile mobile HOWAN. The study here is established on energy consumption, Packet Delivery Ratio (PDR) and throughput metric with varying nodes scenario. This result is compared to the (non-Taguchi) work study which further reduces the variability among routing configuration parameters and shows superior performance improvement with regards to capacity, energy consumption and PDR with values of 77.89%, 33.76%, and 25.44%, respectively
    corecore